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ABSTRACT 

Reliance on aging monolithic overhead physical systems with assurance of resilience is 

an ongoing critical discussion. The White House has issued a strategy to evolve this 

system of systems technology to meet growing information and knowledge needs. 

Fractionated Space Cyber Physical Systems is part of a novel concept emerging 

from a field of hyperconnected networks designed to withstand risk and address 

aforementioned needs. The transition from a monolithic design into alternative resilient 

designs will better reflect the utility of a system to the commander. Resilience is a 

characteristic meant to assure performance even within a higher probability of risk. 

Resilience encourages availability regardless of the perceived threat in the increasingly 

dynamic environment.  

Traditional systems incorporate the sub-systems required to deliver the common 

operational picture. Reduction of those integrated sub-systems is unacceptable; therefore, 

introducing a decentralized architecture is going to carry with it the requirement of a 

seamless interaction despite being separated. Decentralization is a design process that 

allows a constellation capability to seek more nodes than what would be normally 

available when residing in the same payload. This is a measure of design success that 

enhances the evaluation of a system’s capability and its ability to survive risk, its 

resilience. 
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I. INTRODUCTION 

Current Command, Control, Communications, Computers, Combat Systems and 

Intelligence (C5I) needs can be more efficiently integrated into U.S. DOD-controlled 

space-based technology. According to the NDIA Business and Technology magazine, and 

a Satellite Industry Association study after the initial Iraq invasion, “80 percent of all 

military traffic used during the Iraq invasion traversed many of the 232 commercial 

satellites orbiting the planet.”1 The failure to create and sustain Intelligence, Surveillance 

and Reconnaissance (ISR), Position, Navigation and Timing (PNT), communications and 

strike networks for the sole use by the U.S. military and its allies comes mostly at the 

risk-adverse strategy of using a monolithic architecture that is commonly thought to be 

less robust, and even less redundant.  

Recently, the Defense Advanced Research Projects Agency (DARPA) noted that 

“due to lack of satellite over flight opportunities, inability to receive direct satellite 

downlinks at the tactical level and information flow restrictions … the lowest echelon 

members of the U.S. military deployed in remote overseas locations are unable to obtain 

on-demand satellite imagery in a timely and persistent manner for pre-mission 

planning.”2 In addition to DARPA’s claim, hesitancy exists in the form of flexibility, 

robustness and cyber resiliency concerns. Operation Iraqi Freedom (OIF), Operation 

Enduring Freedom (OEF) and the global war on terrorism (GWOT) were all victims of 

the changing fiscal priorities, limiting the funding and fielding of new military satellites. 

Additionally, asynchronous program cycles continue to make it difficult for the 

Department of Defense (DOD) to match the resilience and survivability on orbit with 

terminal deployments, which commercial developers can provide3. Specific 

                                                 
1 John Stanton., “Military to Increase Dependence on Commercial Communications,” National 

Defense Magazine, June 2004. 
2 Defense Advanced Research Projects Agency (DARPA), “OnDemand Satellite Imagery Envisioned 

for Frontline Warfighters,” news release, March 12, 2012, 
http://www.darpa.mil/newsevents/releases/2012/03/12.aspx. 

3 Dustin Kaiser, “Military Communications a Key Target for Satellite Services,” MilsatMagazine, 
January 2011. 
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confidentiality, integrity and availability issues exist beyond the procurement and 

employment of communications systems. This paper evaluates the resilience of a Space 

Cyber Physical System and importance of how revaluating space strategy risk acceptance 

in alternative space architecture can lead to greater availability, reducing the 

aforementioned hurdles to continued space dominance. 

A. MOTIVATION 

On June 28, 2010, President Barack Obama announced the administration’s New 

National Space Policy4 as direction for the nations’ space activities. The policy 

articulated the president’s commitment to reinvigorating U.S. leadership in space for the 

purposes of maintaining space as a stable and productive environment. A key tenet of the 

policy is that the United States remains committed to the use of space systems in support 

of its national and homeland security. 

“The United States will invest in space situational awareness capabilities […]; 

develop the means to assure mission essential functions enabled by space; enhance our 

ability to identify and characterize threats; and deter, defend, and if necessary, defeat 

efforts to interfere with or attack US or allied space systems.”5 A fiscally and physically 

constrained strategy encourages retreat from monolithic satellite constellations in 

exchange for alternative architectures such as space-based groups or fractionated 

satellites because of the resilience, flexibility, and robustness. This sentiment, according 

to the National Security Space Strategy (NSSS), avails itself in future investment into 

space capabilities to include “resilience as a key criterion in evaluating alternative 

architectures.”6  

Consideration for the need to measure the operability, dependability and cyber 

resilience of clustered architectures, supporting the growing favorable approach to 

                                                 
4  White House, The National Space Policy of the United States of America (Washington, DC: 

Government Printing Office, June 28, 2010). 
5 Ibid. 
6 Secretary of Defense and Director of National Intelligence, National Security Space Strategy (NSSS) 

(Washington, DC: Secretary of Defense and Director of National Intelligence, January 2011.) 
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clustered architecture is necessary. In February 2013, an executive order (EO) on 

cybersecurity along with a presidential directive (PD) on critical infrastructure security 

and resilience were published to further acknowledge and reinforce the need to “drive 

action toward a whole community approach to security and resilience.”7 The outward 

executive support stemming from this EO/PD is not just toward private sector 

infrastructure supporting the national fervor of eminence, it is also meant to direct 

efficient situational awareness necessary to incorporate resiliency between military cyber 

and space physical systems (CPS). 

To best evaluate these attributes, dynamic needs and challenges must be 

examined. In particular, the extent to which the U.S. defense branches and agencies use 

overhead in support of collection, communications, storage, positioning, navigation, and 

timing systems and how that can fit into a growing resilient cyber physical system 

posture needs to be examined. This growing posture can be addressed well by first 

evaluating resilient communications architecture concepts proposed to support the current 

command and control environment.   

Two particular and tangible concepts exist today that closely align with one 

another. These concepts are the starting point for the revaluation and give a genesis of a 

connected cyber physical space system / networked control system: the Space Based 

Group (SBG) and DARPA’s System F6 Program. 

The clustered architecture concept first gained momentum at the 2007 AIAA 

Responsive Space Conference and quickly supported a presentation in the Astrodynamics 

Specialist Conference and finally with the F6 program start. According to Collopy and 

Sundberg,8 the SBG concept “fractionates large, monolithic, multi-mission spacecraft … 

[and] … dissimilar satellites in compatible orbits, into a group of smaller and simpler 

                                                 
7 Exec. Order No. 13636 of February 12, 2013, “Improving Critical Infrastructure Cybersecurity,” 

Code of Federal Regulations, title 3 (2013). http://www.gpo.gov/fdsys/pkg/FR-2013-02-19/pdf/2013-
03915.pdf 

8 Paul Collopy and Eric Sundberg, “Creating Value with Space Based Group Architecture” (AIAA 
2010-8799), presented at the AIAA Space 2010 Conference & Exposition, Anaheim, CA, Aug. 30– 
Sept 2, 2010. 
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utility and single mission spacecraft.” This separation of spacecraft capabilities among 

smaller systems provides continuity throughout the cluster even if other portions of the 

systems suffer significant delay in communications, a catastrophic failure, a cyber-attack 

or simply are unavailable for regular preventative maintenance.   

This concept of a partitioned, yet effective, operating cyber physical system is 

closely related to the work of Cramer, Sudhoff and Zivi.9 They designed performance 

metrics for systems subject to hostile disruptions, based on the assumption that a system 

of systems operating in any adverse environment will always have to account for 

disruption. It is this disruption that returns the scope back to the original premise that the 

U.S. defense C5I and attack constructs depend largely on continuity of communications 

and the key ideas of the NSSS. Once the reliability to command and control through 

technology reaches acceptable probabilities of success, the DOD will be able to 

completely integrate space into the overall mission. 

Finally, like many experts in the field of fractionation, Brown and Eremenko10 

note that while a variety of attributes might “differentiate fractionated architectures from 

monolithic ones,” there remains a value paradigm to be examined; ultimately assigning a 

measure that “reflects the utility of a particular system to its stakeholder.” These 

attributes differentiate one system from another, Brown and Eremenko continue, and are 

derived from the value of the underlying mission. Some of the attributes defined by 

Cramer et al., and Brown and Eremenko will be examined more closely but with the 

addition of cyber resilience. 

B. RESEARCH QUESTIONS 

Revaluation of the underlying strategic mission depends on the complete set of 

derivative value metrics. To that end, the following research questions are identified: 

                                                 
9 Aaron M. Cramer, Scott D. Sudhoff, and Edwin Zivi, “Performance Metrics for Electric Warship 

Integrated Engineering Plant Battle Damage Response,” IEEE Transactions on Aerospace and Electronic 
Systems 47, no, 1, January 2011. 

10 Owen Brown, Paul Eremenko and Paul Collopy. “Value-Centric Design Methodologies for 
Fractionated Spacecraft: Progress Summary from Phase 1 of the DARPA System F6 Program,” (AIAA 
Paper 2009-6540). Reston, VA: American Institute of Aeronautics and Astronautics, 2009. 
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 What is space cyber resilience? 

 How can fractionation affect resilience? 

 How can cyber-resilience be quantified and used as a dynamic network 
behavior? 

 Can a quantifiable resilience follow traditional control theory and data 
network behaviors? 

C. BACKGROUND AND DISCUSSION 

Analysis is an evaluation of current and emerging cyber physical systems and the 

underlying value of the system via military-defined standards of reliability, availability, 

flexibility, robustness and survivability, tying U.S. space policy and U.S. C5I rules 

directly to the technologies available. Specifically, the following observations will define 

the various characteristics and concerns of each “-ility”. And, although it is an emerging 

engineering field, cyber resilience is a formidable measure of performance and measure 

of success, with significant measuring consideration that will strengthen this discussion.  

Taxing requirements on the nodes of CPS of systems exist, which require constant 

monitoring and decision-making processes regardless of the systems input, outputs and 

sensed values. Beyond the requirements and physical attributes of a system, it is the 

constraints of delay and loss that contribute to the instability of a communications system 

of systems (SoS). With this, reliability and availability will lose its weighted value when 

measured across a large sample set of data, as suggested by the comparison of the 

Riemann and Lebesgue11 sampling processes.  As military defined standards, both 

availability and reliability are appropriate measures of performance (MOP).   

Availability is a measure of the degree to which an item is in an operable and 

committable state at the start of a mission when the mission is called for at an unknown 

(random) time1213. Reliability is, for non-redundant systems, the duration or probability 

                                                 
11 Riemann is the normal approach to digital control and to sample periodically in time. Lebesgue is an 

alternative to Riemann and is normally best described as event based sampling 
12  Department of Defense (DOD), Definitions of Terms of Reliability and Maintainability 

(Washington, DC: Department of Defense, June 1981). 
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of failure-free performance under stated conditions; and for redundant systems reliability 

is the probability that an item can perform its intended function for a specified interval 

under stated conditions14. The important distinction within reliability falls to the 

characteristic of redundancy. To wit, it is important to restrict the scope to measure these 

characteristics only when the resources provided by the cluster are needed by the mission 

commanders.  

Second, flexibility is determined before the spacecraft leaves the ground and 

applied when subsequently inserted into its orbit. This weighted MOP is expected to 

change simply due to the ever-changing technology advances and mission changes that 

are typically enough to force the need to introduce emerging technologies and techniques 

while in orbit. With this, a weighted measurement of flexibility turns to envelop the 

function of its interfacing standards and specifications. When interfacing standards and 

specifications are open and unambiguous, flexibility will not be the C5I integration 

deterrent. Further examination, of the OSI models’ physical and protocol layers will 

support that claim and identify the benefit of a targeted study15.  

Flexibility and robustness are explained at length by Brown and Eremenko as the 

“ultimate source of the enhanced value and reduced risk offered by fractionated 

architecture.” 16 Expansion on these concepts lay the integral foundation on which adding 

cyber resilience as another “-ility” is certainly the natural progression17.  

Next, survivability, as explained by Cramer et al. and the Survivability Design 

Handbook for Surface Ships,18 can arguably be the single best design metric for the 

                                                                                                                                                 
13 Item stated at start of a mission includes the combined effects of the readiness-related system 

parameters but excludes mission time.  
14 DOD, Definitions of Terms of Reliability and Maintainability. 
15 Owen Brown and Paul Eremenko, Application of Value-Centric Design to Space Architectures: The 

Case of Fractionated Spacecraft (AIAA Paper 2008-7869) (Reston, VA: American Institute of Aeronautics 
and Astronautics, 2008.) 

16 Ibid. 
17 Ibid. 
18 U.S. Navy, U.S. Navy Survivability Design Handbook For Surface Ships. Chief of Naval Operations 

Ship Safety and Survivability Office, OPNAV P-86-4-99, Washington, DC: U.S. Navy, 2000. 
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inclusion of a complex cyber physical system into the overall C5I construct of the U.S. 

military. DOD Regulation 5000.2-R is clear that “mission-critical systems … shall be 

survivable to the threat levels anticipated in their operating environment.”19 

Finally, the resilience of any complex CPS is simply an extension of this existing 

set of definitions20. This set is used to define the need of any complex system to not only 

survive any adverse action but also to withstand that adverse action while continuing 

actions necessary to overall mission of that system, a fault tolerant control system. The 

global community-led initiative, The Partnership for Cyber Resilience, launched at the 

World Economic Forum Annual meeting in 2012 defines cyber resilience as the “ability 

of systems … to withstand cyber events, measured by the combination of mean time to 

failure and mean time to recovery [and] can only be achieved by adopting a holistic 

approach of the management of cyber risk.”21 Still, using only these two parameters to 

define cyber resilience we find of the four combinations in Table 1, only one outcome 

gives confidence of a resilient system. That is, when the mean time between failures 

(MTBF) approaches infinity, and the mean time to repair (MTTR) approaches zero, only 

then is a system truly resilient. There must be more parameters that define the resilience 

of any complex system, therefore, providing the user greater confidence when valuing the 

cyber resilience of the system. 

 

                                                 
19 “Mandatory Procedures for Major Defense Acquisition Programs,” DOD Regulation 5000.2R, 

Washington, DC: Department of Defense, April 5, 2002. 
20 It is of utmost importance to highlight at this junction that while cost, an identified attribute to 

optimization, is a crucial decision criterion, but not considered here. 
21 World Economic Forum (WEF), Risk and Responsibility in a Hyperconnected World Pathways to 

Global Cyber Resilience (New York: World Economic Forum, June 2012). 
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↓cyber resilience ↑MTBF ↑MTTR 

↑cyber resilience ↑MTBF ↓MTTR 

↓cyber resilience ↓MTBF ↑MTTR 

↓cyber resilience ↓MTBF ↓MTTR 

Table 1.   Cyber Resilient Combinations 

In a 2011 DOD fact sheet addressing the Resilience of Space Capabilities, 22 

several key ideas underpinning resilience are listed. Primarily related to this analysis, the 

fact sheet states the purpose of resilience is to “assure performance of military and related 

intelligence functions at a level necessary to execute assigned mission within an 

acceptable tolerance for risk.” Language consistency exists among mission assurance 

professionals and through the DOD definition that the mission functions and mission 

successes are critical parameters to the overall architecture resilience. This resiliency, 

therefore, increases as the system can be made available at a greater rate of usage and 

time regardless of the perceived or actual threat of adverse actions.  

Experience alone tells us that the difference between mitigating risk and 

completely avoiding failure is a daunting task. However, there are guiding principles of 

precedence that empower the engineering process to specifically consider the dangers of 

a low-resilient CPS. These dangers can be evaluated with a common occurring analysis 

criteria found in the 2011 DOD Resilience of Space Capabilities document. When 

measuring the systems performance, resilience is most critical when measuring the time 

during which a mission commander is waiting for the services of the constellation to 

restore its services23. Nonetheless, the criteria through which space cyber physical design 

                                                 
22 “Resilience of Space Capabilities,” Department of Defense, accessed September 19, 2014. 

http://www.defense.gov/home/features/2011/0111_nsss/docs/DoD%20Fact%20Sheet%20-
%20Resilience.pdf. 

23 Ibid. 
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and institutionalization can occur while being quantified exists in the NSSS, especially 

when the “domain is increasingly congested, contested and competitive”24: 

1. Anticipated level of adversity 

2. Functional capability goals necessary to support the mission 

3. The risk that these goals may not be met at a given level of adversity 

4. The severity of the functional shortfall to the mission 

5. The time that the shortfall can be tolerated by the mission 

  

                                                 
24 Ibid. 
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II. SPACE CYBER PHYSICAL SYSTEMS 

A. WHAT IS A CYBER PHYSICAL SYSTEM? 

A cyber physical system is the successful and continuous “integration of 

computation with physical processes, which involve communication, computation, 

sensing, and actuating through heterogeneous and widely distributed physical devices and 

computation components”25. This synergy depends heavily on a resilient infrastructure 

that can provide near-continuous communications connections that are capable of 

behaving within operational standards regardless of the inputs and sensor determinations. 

Most recently, and by extension, this space-based cyber physical system of systems is 

easily defined in the framework of the Internet of Things (IOT), or Industry 2.0. In the 

Global Information Technology Report 2012, the World Economic Forum reports 

“hyperconnected communications includes not only people-to-people formats, but also 

communication between people and machines, and between machines themselves without 

any direct human involvement.”26 This is both the promise and peril of hyper 

connectivity for organizations and societies as we depend more on the hyperconnected 

internet of sensors, actuators and plants, which, in turn, is depending more on the 

autonomous satellite system in order to provide global control of devices connected to 

each other. 

Traditional definitions of CPS stop short of explaining the integration of control. 

Two in the emerging field, do not; rather in their perspective of CPS, Kim and Kumar 

refer to the “next generation engineered systems that require tight integration of 

computing, communication, and control technologies to achieve stability, performance, 

reliability, robustness, and efficiency in dealing with physical systems of many 

                                                 
25 Lichen Zheng, “Multi-view Approach to Specify and Model Aerospace Cyber-physical Systems,” 

presented at the IEEE 16th International Conference on Computational Science and Engineering, Sydney, 
Australia, 3-5 December 2013. 

26 “The Global Information Technology Report 2014 Rewards and Risks of Big Data,” World 
Economic Forum, 2014. 
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application domains.” 27 Originally called a field of hybrid-systems, it soon shifted its 

field name to cyber-physical systems to encapsulate the natural interface of physical, 

computing and communications pieces. As the societal calls multiplied for ever-

increasing connectivity between devices, soon sensing elements were desired to 

understand the physical environment in which the CPS existed. This new addition, 

sensing, connected alongside the actuators and controllers of the closed loop system 

allowed realization of a truly networked CPS. These engineered systems rely heavily 

upon the integration of control and computational components with physical processes. 

Figure 1 illustrates an example simple design of a modern CPS/NCS and illustrates that 

CPS encompass more than just critical infrastructure.  

As the developed overhead satellite SoS progresses with advanced computing and 

communications technologies, the overall human dependence on a resilient CPS will 

increase. Normally, the physical systems are designed to protect it when it senses 

abnormalities along the communications nodes, exactly the goal of a space cyber-

physical fractionated architecture. Now, architecture is designed to reduce the monolithic 

footprint and volume of the physical overhead portion, while enhancing and hyper 

connecting the cyber portion of the ever-growing information and communication 

technologies. 

                                                 
27 Kyoung-Dae Kim and P.R. Kumar, “Cyber-Physical Systems: A Perspective at the Centennial,” 

Proceedings of the IEEE 100, (May 2012): 1287. 
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Figure 1.  General Architecture of a CPS28 

B. CPS AND CYBER RESILIENCY CHALLENGES 

There are countless reasons for which to dedicate any effort in making a space 

CPS resilient and risk averse. The World Economic Forum offered a framework in 2012 

to further the dialogue of CPS challenges, in Figure 2: 

 

Figure 2.  Cyber Risk Framework29 

                                                 
28Alvaro A Cardenas, Saurabh Amin and Shankar Sastry, “Secure Control: Towards Survivable 

Cyber-Physical Systems,” paper presented at the 28th International Conference on Distributed Computing 
Systems Workshops, Berkeley, CA, June 2008. 
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Four distinct areas, identified in Figure 2, are used to create a dialogue toward a 

standard of global understanding while hyper connectivity of the growing amount of 

devices becomes immeasurable. The framework laid out is useful for this evaluation to 

explain the reason that fractionated or SBG CPS architecture is an optimal approach to 

ensure resiliency.  

The first of the distinct areas, Threats, are used to identify stable controller 

approaches to isolate the present and future threats, and associated risk. This is a 

fundamental step regardless of physical or policy design. Second, the vulnerabilities 

addressed in the WEF report enveloped the discussion in that vulnerability exists only 

from an “accidental” or “poor practice” stand point; whereas any vulnerability to an 

emerging technology such as the SBG might simply emerge from the speed with which 

access-skillsets mature. 30 Overhead satellites CPS do not have the advantage of 

continued physical access in order to modify the assigned payload, ensuring evolving and 

fortifying security. The aggregate of threats and vulnerabilities produces values at risk in 

order to address the assets and reputation of the system. Most important in this context, 

and more validating to the point that fractionated satellite systems are a key to resilient 

systems, is that assets include the “integrity, availability, and security of data, networks 

and connected devices.” 31These subjective values of the assets are seemingly 

addressable when discussing a specific networked method by which to provide a greater 

level of resilience in a fractionated CPS.  

Finally, responses that are traditional, cooperative and systemic will often result 

in a system being largely non-resilient. Instead (in the same sense that assuring an asset is 

fortified, available and secure), system success falls to a resilient response. The methods 

of payload management and the manner in which the CPS sensors respond with the 

environment “provide additional insight into operations,” according to Cutler, Atkins and 

                                                                                                                                                 
29 WEF, Risk and Responsibility in a Hyperconnected World. 
30 Ibid. 
31 Ibid. 
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Klesh.32 This is an observation critical to responses and awareness for payload 

collaboration; especially in a fractionated environment. 

  

                                                 
32James W. Cutler, Ella M. Atkins, Andrew T. Klesh, “Cyber-Physical Challenges for Space 

Systems,” paper presented at the IEEE/ACM Third International Conference on Cyber-Physical Systems, 
Beijing, China, April 17–19 2012. 
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III. MOTIVATIONAL EXAMPLE: FRACTIONATION AND 

SPACE-BASED GROUP CYBER PHYSICAL SYSTEM 

A. INTRODUCTION 

The Defense Advanced Research Projects Agency, an organization whose initial 

existence came to be based on great investment has made many unintended successful 

stories of high-risk. The Tactical Technology Office has an objective to “transform the 

future of war fighting through high risk, high payoff development of rapid, mobile, and 

responsive combat performance for advanced weapons, platforms, and space systems.”33  

This details the advances to space systems that DARPA wants in order to provide 

resilience, assured access and stability.  

B. FRACTIONATION ARCHITECTURE 

Traditionally, a monolithic single-mission spacecraft is built around a payload and 

supported by the various subsystems required to execute those missions, to include the 

spacecraft control subsystem (SCS), communication and data handling subsystem 

(CDHS), electrical power subsystem (EPS), environmental control and life support 

subsystem (ECLSS), and propulsion subsystems (PS).34 In the comparison depicted in 

Figure 3, Mathieu and Weigel illustrate “an equivalent fractionated spacecraft that 

consists of the same components but are physically separated into a payload module and 

one or several infrastructure modules.”35 

                                                 
33 “Mission Objectives,” Defense Advanced Research Projects Agency, accessed September 23, 2014, 

http://www.darpa.mil/Our_Work/TTO. 
34 Jerry Sellers et al., Understanding Space: An Introduction to Astronautics (New York: Learning 

Solutions, 2007). 
35 Charlotte Mathieu and Annalisa Weigel, “Assessing the Fractionated Spacecraft Concept,” (AIAA 

Paper 2006-7212) (Reston, VA: American Institute of Aeronautics and Astronautics, 2006.) 
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Figure 3.  Traditional versus Fractionated Spacecraft36 

By comparison, the DARPA F6 (Future Fast, Flexible, Fractionated, Free-Flying 

Spacecraft) is the actual realization of a fractionated concept originally awarded 

simultaneously to four of the aerospace industry giants to demonstrate resilience. The 

word resilience is not used as metric; rather it is the combination of the key definitions 

assigned in the mission requirements, namely flexibility and robustness. As is depicted in 

Figure 3, the fractionated concept derives its success largely from the idea of a 

decentralized missions payload methodology. The decentralized method allows continued 

operation of physically separated modules regardless of the environment or mission 

status. This characteristic can be strengthened further and made to be more resilient if 

consideration is given to applying fault-control or estimation controls to prevent 

erroneous or malicious data from enter the fractionated mission system. The F6 program, 

displayed in Figure 4, illustrates that the distributed life, cluster and payload systems are 

a consideration in the fractionated architecture, but more prevalent is the overlapping 

capabilities of networking, wireless communications, power transfer and distributed 

computing.  

                                                 
36 Ibid. 
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Figure 4.  F6 Program Capability Overlaps37 

A mobile ad hoc network (MANET) and overcoming a hidden terminal problem, 

clearly are within the idea of a decentralized architecture like the fractionated system, and 

can still remain resilient when combined with classical control theories such as consensus 

control, Kalman filtering or a linear quadratic regulation techniques in order to provide 

optimal control over the data. Even still, with an ad hoc network there remains the need 

to maintain the end-to-end connectivity because the ability to distinguish between 

network control information and actual message data cannot be separated in such a 

design. 

C. HOW CAN FRACTIONATION AFFECT RESILIENCE? 

Tolerance for risk, and the ability to execute an assigned mission, according to the 

2011 Space Systems report to the DOD, is what best defines the quality of a resilient 

system.38. There are physical and non-physical components of the fractionated 

architecture, which lend best to this posture, but if observation of two specific layers of 

the Open Systems Interconnection (OSI) conceptual model is used, another dynamic 

emerges to support resilient fractionation knowledge integrity. Layers 2 and 3 of OSI 
                                                 

37 “System F6,” Defense Advanced Research Projects Agency, accessed September 23, 2014, 
http://www.darpa.mil/Our_Work/TTO/Programs/System_F6.aspx. 

38 “Resilience of Space Capabilities”, Department of Defense, accessed September 19, 2014, 
/DoD%20Fact%20Sheet%20-%20Resilience.pdf. 
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model (Data Link and Network) are protocols on which estimation and data assurance are 

critical to the resilience of the fractionated space segment. Layer 2, the data link layer 

provides a line to the third layer that is seemingly free of transmission errors. Layer 3 will 

then route those packets from the source to some destination. Here in the third layer there 

are numerous functions susceptible to control denial such as modulating, demodulating, 

addressing, and protocol deconfliction. These are two layers that are often subject to the 

attack and denial of service (DOS), which ultimately renders the system useless because 

the information flowing across cannot be trusted.   

Fractionation of the satellite capabilities across many modular pieces could 

provide the ideal architecture for allocating the required intelligent agents and less 

expensive network elements to which, according to Bordetsky, “provides a unique 

testbed for identifying and assessing risks of operating technically advanced orbital 

systems for managing mission critical multipoint collaborative tasks.”39 Bordetsky’s 

conversation focuses largely on using software agents collaboratively with real-time 

applications that require optimal management of information and bandwidth, without 

disruption or delay. When normally housed in the same payload or bus, the integrity of 

layers is susceptible to chaotic failure.  

Two layers of feedback control, Call Preparation Control and Connection Control, 

introduce adaptive control among the bandwidth usage40 but now as a fractionated 

system to support resilience of data continuity. Call Preparation Control is an important 

aspect of the fractionation design, in that it allows for seamless connection based on 

previous sessions but it is not essential to the confidentiality, integrity or availability of 

the current session. Assurance of the data in the current short-term communications 

session across fractionated modules is derived from the Connection Control 

requirements, which is summarized in the Bordetsky paper of celestial networks: 

 Supervising provided Quality of Service (QoS) parameters 

                                                 
39 Alex Bordetsky, “Celestial Data Routing Network,” in Proceedings of SPIE: Vol. 4136. Small 

Payloads in Space, eds. Brian J. Horais and Robert J. Twiggs (Bellingham,WA: SPIE, November 2000).  
40 Ibid. 



 21 

 Providing flow control, congestion control, routing, reservation and 
renegotiation of resources 

 Modifying and releasing connections41 

The Connection Control algorithms and supporting decision criteria do not 

address the integrity of the information, rather the criteria is largely concerned with the 

availability of the information. While a system can assure availability by maintaining the 

connection, the fractionated SoS can fall to the fragility of the data, if that data integrity is 

compromised and allowed to permeate into the system. The process of Connection 

Control does resemble Bayesian control algorithms and decisions, and appears to be 

receptive to added parameters of consensus control beyond a decision to apply or 

surrender bandwidth control. The change, then, to the Connection Control is extending 

the amount of time a communication or decision module will retain its previous 

communication packet before releasing it, in a system that can be inherently stable, such 

as a well-defined satellite communications orbit. Passing data that are stored for a finite 

amount of time is becoming less prohibitive as storage solutions become more robust and 

less expensive, leaving this option of connection control over time still viable. 

Another approach to consider is that of a Disruption-Tolerant Network (DTN), 

which is designed into SoS that are heterogeneous by design in order to successfully 

execute its given mission. Both protocols and systems that support the delivery protocol-

dependent information are found in this heterogeneity but often encounter 

incompatibility. The significant fault that is apparent in traditional networking design is 

the desire for the algorithm of a network to seek out an end-to-end transmission path of 

communication before actually delivering its information. Seeking this flawless 

communication path in a challenged environment can decrease the MTBF rendering the 

system non-resilient. A DTN is suitable for fractionated systems with networks 

experiencing unpredictable connections, and therefore absent an end-to end connection. 

                                                 
41 Ibid. 
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The combination of Connection Control and Disruption-Tolerant Networking 

techniques establishes the foundation on which a protocol can successfully and 

confidently pass information and knowledge along a fractionated space CPS. These two 

techniques establish a history of trusted communications links along a lengthened time 

line by the nature of holding packets longer before making routing decisions. Still, when 

a decision is made to route specific network traffic and its content on the payload there is 

no guarantee that the system remains resilient. There remains a final fractionated 

hardening technique that strengthens the validity of the payload. 

A fractionated communications network is a unique setup in a space-based 

architecture. A fractionated system is best understood as a mobile ad hoc network 

(MANET) that can be characterized by intermittent connectivity for a variety of reasons, 

such as atmospheric effects, system availability and electromagnetic interference. 

Intermittent connectivity can also become an issue, and not readily apparent, if the 

information passes between fractionations and satisfies the connection and protocol 

controls. This intermittent connectivity may be a hostile attack against the CPS, in any 

combination of three methods of encroachment.   

A mobile ad hoc network is clearly within the idea of a decentralized architecture 

like the fractionated system, and can still remain resilient when combined with classical 

control theories such as consensus control, Kalman filtering or a linear quadratic 

regulation techniques in order to provide optimal control over the data.  Even still, with 

an ad hoc network there remains the need to maintain the end-to-end connectivity 

because the ability to distinguish between network control information and actual 

message data cannot be separated in such a design. A favorable assumption about the 

nodes in a MANET architecture is that they are treated independently. This is consistent 

with the approach toward a fractionated system in order to “guarantee the communication 

between the sender node and receiver node”42regardless of hopping protocol or module 

failures. 

                                                 
42 A.H. Azni, Rabiah Ahmad, and Zul Azri, “Resilience and Survivability in MANET: Discipline, 

Issue and Challenge,” paper presented at the 3rd International Conference on Computing and Informatics, 
Bandung, Indonesia, June 2011.  
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D. SPACE CYBER PHYSICAL SYSTEM VULNERABILITIES 

According to Cardenas et al., there are three styles of hostile attack: deception, 

denial of service, and a direct attack against the physical fractionation43. 

 

Figure 5.  CPS Vulnerabilities44 

Deception attack (Figure 5: injection point A1 or A3) is the misuse of real 

information or use of misinformation, through the use of a compromised communication 

link key, sensor or controller. The attacker in a denial of service (Figure 5: A2 or A4) 

prevents the physical system from receiving a control signal, or prevents the controller 

from receiving sensor data. The third deception attack (Figure 5: A5) is a direct attack 

against the modules and its specific physical equipment. The three of these deception 

attacks can be countered, mitigated and nullified if a distributed estimation across the 

information network is placed. The distribution of the information over many fractionated 

modules seeking some final value can eliminate any ambiguity as to the originality of the 

data and information penetrating the CPS.  

                                                 
43 Alvaro A Cardenas, Saurabh Amin and Shankar Sastry. "Secure Control: Towards Survivable 

Cyber-Physical Systems," paper presented at the 28th International Conference on Distributed Computing 
Systems Workshops, Berkeley, CA, June 8-9,2008. 

44 Ibid.  
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By fractionating a space cyber physical system of systems or networked 

architecture, it becomes a feasible problem to address the connection control, default 

tolerance and consensus control simultaneously. Addressing in this manner with a strict 

definition of the goals of a resilient control and a measure of the SoS robustness, we start 

to see the value fractionation gives to resilience. 

E. HOW CAN CYBER-RESILIENCE A BE QUANTIFIED AND USED AS A 

DESIGN METRIC? 

While discussing the architecture and its values at risk, and then again during the 

resilience of a fractionated system, attention was briefly given to estimation and tolerance 

filters to determine the value (real, safe, complete) of the data crossing between each 

module. This value is a direct correlation to the amount of resilience the systems can be 

said to exhibit.  Each of the fractionated overlapping capabilities of data, communication 

or energy transfer areas of operations are ones which seemingly follow the fundamental 

precept of an estimation filter like Kalman, which produces estimates of current variables 

and its associated uncertainties, then compares those to the next piece of information to 

formulate a weighted/moving estimation of the integrity of the data. Closely aligned to 

this estimation concept is a store and forward (Figure 6) methodology employed by 

mobile disruption tolerant network (MDTN) protocols between physical systems nodes. 

In fractionation, resilience is further assured when the communications of the method are 

still possible despite a seemingly absent receiver node due to the described 

vulnerabilities. 

 

Figure 6.  DTN Store and Forward Concept45 

                                                 
45 Claudio E Palazzi, Marco Roccetti, Armir Bujari, Stefano Bonetta, Gustavo Marfia “MDTN: 

Mobile Delay/Disruption Tolerant Network,” paper presented at the 20th International Conference on 
Computer Communications and Networks, Maui, Hawaii, July 31–August 4, 2011. 
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Disruption tolerance processes can help define the metrics by which cyber-

resilience can be measured in a fractionated architecture. Palazzi et al. describe successful 

DTN interconnecting communications nodes that “accommodate the mobility and limited 

power evolving wireless communication devices.”46 A major tenet of labeling a system 

resilient has been its availability, a metric that can be weakened when characterized by 

typical wireless behaviors such as intermittent connectivity, delays due to error or 

physical inaccessibility. In the MDTN discussion by Palazzi et al., the store and forward 

message concept strengthens resilience of the system by maintaining the actual reliable 

information crossing nodes despite the vulnerabilities present. In order to conceptually 

map fractionated communications architecture, it is incredibly convenient to review the 

motivation of a DTN in order to address the assurance of confidentiality, integrity, and 

availability in a fractionated system, but in terms of the fractionation valuation47: 

1. Spacecraft subsystem availability lends greater opportunity to maintain 
broken communications 

2. Fractionated subsystems offer multiple nodes through which 
communications can be maintained 

3. Error checking measures can be employed across multiple modules 
assigned to the constellation 

4. Retransmission of information, or rerouting of information simultaneously 
across decentralized architecture offers integrity  

Because the store and forward method of a mobile network waits with 

information for best opportunity to transmit, a fractionated and decentralized system 

offers greater fidelity by creating more moments of transmission.  

                                                 
46 Ibid. 
47 Ibid. 
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IV. CONCLUSION 

Current U.S. DOD command and control posture closely correlates to the 

valuation placed on the space strategy risk valuation designed and implemented with 

great adversity in mind. Alternative space architectures and constellation can lead to 

greater confidence in a system of system capable of transmitting healthy information, 

increasing the overall value of the space cyber physical systems being employed. Despite 

the space strategy and apparent desire to move forward that is supported by executive 

orders and presidential directives, there still remains requirements to apply due diligence 

in assuring that the information delivered to the commander is good. The discussion of 

the piece focused largely on defining or reviewing the characteristics necessary to drive 

the value of a fractionated system.  

Space Cyber Physical Systems of Systems and fractionated architectures are 

poised to deliver the strategic position of space dominance, or terrestrial dominance from 

space. The transition from a monolithic design into such alternative designs will better 

reflect the utility of a system to the commander in the form of the military standard 

characteristics of availability, flexibility, robustness, survivability, and resiliency. The 

most latter is a characteristic meant to assure performance even within a range of higher 

probability of risk. This resilience assurance also encourages availability regardless of the 

perceived threat in the increasingly dynamic environment.  

Providing near-continuous hyper-connectivity among the heterogeneous system 

of systems is a desired vision that is permeating most mission sets available today. This 

has been a growing expectation by users, but the risk associated with the reliability of 

information has also grown. The ability to control the way information is used cannot 

rely on the algorithmic information technologies methodologies. There must now be a 

reliance on control methodologies capable of inching towards sufficient self-awareness. 

Still, there are challenges and complexities with any effort to become autonomous and 

safe. This can be modeled in a cyber systems risk framework built upon the aggregate of 

a systems threats and vulnerabilities. When those two are understood and combined to 

create the most complete risk picture, we can then start to place values on the risk and 
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develop what the responses can be … a conclusion to being sufficiently self-aware and 

capable of providing the real-time continuous connections.  

The examples used to demonstrate the decentralized architectures required to be 

hyper-connected were the space-based group and fractionated systems currently being 

examined in several industries, including space operations. As described several times, 

the traditional monolithic systems incorporate the necessary sub-systems required to 

deliver the most common operational picture (COP) to the commander. Any reduction or 

removal of those integrated sub-systems is not acceptable, therefore introducing a 

decentralized architecture is going to carry with it the requirement of a seamless 

interaction despite being separated in space. The decentralization is a physical 

engineering design process that allows a constellation capability to seek more nodes of 

connectivity than what would be normally available when residing in the same payload. 

This is a measure of design and design success which enhances the weighted valuation of 

a system’s capability and its ability to survive risk; its resilience.  

When combined with classical control methods, physical decentralization and 

algorithmic mobile ad hoc networking allows a system to maintain its end-to-end 

connectivity. This fractionation is direct effect on resilience of the overall system by 

focusing on physical separation but also on the technological allocation of intelligent 

agents and real-time application capable of producing a sufficiently aware system. 

Methods of connection and preparation control assure that the information that is being 

sent across any of the nodes is actually the healthy information not affected by the threat 

in the environment. Combined with the suitable approach of disruption tolerance 

foundations are further strengthened allowing the confident transmission of the 

information and knowledge along the network.  With physical and virtual preparation, 

transmission and controls procedures in place we next sought to understand the CPS 

vulnerabilities present in the environment. As described by many researchers, the styles 

of hostile attack are significant enough to render a system helpless, and even sometimes 

irrecoverable. 
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Finally, measuring and quantifying cyber resilience to be used as a design metric 

was examined in closing, but should be the starting point for future research for space 

cyber physical systems.  

 
  



 30 

THIS PAGE INTENTIONALLY LEFT BLANK 



 31 

V. FUTURE RESEARCH 

Measuring and quantifying cyber resilience is starting point for future research for 

space cyber physical systems. Through estimation, tolerance filters and self-awareness a 

systems value can be designed accurately to give the greatest value, in that is real data, 

safe data, and complete data. When maximized, it is possible that the valuable data is 

directly correlated to a highly resilient system. The methodology by which one can 

ensure that a datum is valuable is through active and decisive control across nodes. A 

process in the mobile disruption tolerant network, the store and forward method should 

be a focus of research and simulation to verify a resilient network despite an environment 

with seemingly absent receiver nodes due to the various hostile or physical disruptions 

discussed.  

Developing disruption tolerances and acceptable risk levels in order to 

accommodate limitations of power and data is a major tenet of declaring a system 

resilient. The actual availability and reliability of information, regardless of hostilities, is 

a measurement that should be examined and integrated if proven effective. Ultimately, 

this quantified value can extend the conceptual mapping of known DTN architectures, as 

discussed in Palazzi et al.,  48to those fractionated architectures processes. In applying the 

boundaries from which the metrics can be derived, an orthogonal array (Table 2) aligned 

tightly to the conceptual map provided in the aforementioned discussion lays out a 

possible orthogonal array experiment from which a researcher can begin to assign 

resilience value to its observed SoS. 

 
 LOCAL SUBSYSTEMS FRACTIONATED SUBSYSTEMS ERROR CHECKING REROUTING/RETRANSMISSION 

LOCAL SUBSYSTEMS     

FRACTIONATED SUBSYSTEMS     

ERROR CHECKING     

REROUTING/RETRANSMISSION     

Table 2.   Orthogonal Array Example–Resilience 

                                                 
48 Ibid. 
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